4.25 Figure P4.25 is a simplified representation of the
main three rotating masses in a two-cylinder engine driving a
flywhedl on the same shaft.

h Iy

I3

Figure P4.25

I, I, and Iy are the moments of inertia (Ib, in. sec?) of the
rotating masses. The shaft stiffnesses k, and k; are the torques
(Iby in.) required to twist each section through unit angle.
Let #,, 8,, and 85 be the angular displacements of the rotating
masses.

(a) By equating torque to the product of moment of
inertia and angular acceleration, show that

[191 T kl(gi - 91);
LY, = ki(0, — 62) + ka(85 — 8),
I8y = ka(6, — 65).
(b) Following the general pattern of Problem 4.23, com-
pute the natural frequencies and the associated vectors of
relative displacements for each mode of torsional oscillations

if [, =1,=4,1;=201b, in. sec?, k, =8 x 10°, and k, = 107
Ib, in./radian.

16-3. H Bepehddng eEiowon g Bewpiog Twv dondv eivan

dzy__ﬂ
dz2 = EI’

omou T elvar 1 oplLovTia amdotao xoatd pixog g doxov, y elvar

xoTaxOEUEY otdxALon Eog Ta xdtw, M eivar 1) gom nappews, E eivan

7 otabegd tov Young xau I eivow 0 gomi empaveiag g Topg wg mQOS

tov ovdétepo GEova (gomy adpdveiac). H comn emepaveiag dev eivan

avayxaouxd otadegd yiati To oxfua T duatopng g doxol progel va

petabaAheTal xatd pirog g doxov (xabog petabailetal To ).
Evxola pmoget vo dewyBei ot

dM
it

6mov V' eivar ) divapn datpmong, xau

v _ .
dr !
6mov w(x) eival 10 QoETio TG doxov.

‘Eto napaywyifovrag 800 qopés v Bepelundn eElowom, naigvoupue
UETA OO AVTIXUTAOTAOELG:

dy 2dl &y 1 &y w

dr* - Tdrde® 1da? dz? EI

O\ EQLOOGTEQES EQUQUOYES QUTHG TNG EElowong odnyolv oe mEobAr-
pata cuvoQLarmv Tydv. ‘Opwg, TO ENOPUEVO TEOBANIA QQXIHOV TGV
nogovoLdLel EvOLapEQOY Ao TOUXTLXY) dToym.
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@cwpotye évav meodBoro (doxd) petabinmis dratops 6mwg l‘pul’."l!ital.
oo Tynpa T16-3. H doxdg éxe wixog £ xat pépeL Eva 6agog P oto axeo.
T quTy TNV TEQLITWON

V(z)=P
%o
M(z)=-P(f—x).
‘Eotw
I(z) =5 (1 +4e7%/*) in*,

E =30 x 10°psi, e

£=100in.,

P = 500 ]bf .
Ynohoyiote to y(£) vrobéToviag ot n doxdg dev omdLel ovte veioTaTal
POVILN TOEUROQPWON-

Yrodekn: To “moxtmpévo” axo Tov npobérov oTo z= 0 ovve-
ndyetar y(0) = 0 xan y'(0) = 0. Ou dhheg dvo agynéc Tpég oto = =0
progotv va 6gedovy ané 1 eEodoe yia ta V(0) xa M(0).

103. The velocity distribution in the Jaminar boundary layer formed when an incompressible
fluid flows over a flat plate is related to the solution of the ordinary differential equation
&f 149 Con ot :
d_:;_5+ifd_n’=0' fO =1, f'(0)=0, and fi(m)—>lasn—>=

where f is a dimensionless stream function, the velocity u is proportional to f'(m), and
n is proportional to distance normal to the plate. Solve this problem for f(m).

104. The velocity distribution in the mixing layer that forms when a laminar free jet issues
into a stagnant atmosphere is related to the solution of the ordinary differential equation

af  df (df

aw g *\an

Solve this problem for f(7).

105. The deflection of a simply supported and uniformly loaded beam is governed by the
ordinary differential equation (for small deflections)

2
)=0. f(0)=0,f'0)=0, and f'(y) > 0asy — =

d*y Lx x?
E13% = -q—i— # “'T. ¥(0) = O and y(L) = 0

where g is the uniform load per unit length, L is the length of the beam, / is the moment
of inertia of the beam cross section, and E is the modulus of elasticity. For a rectangular
beam, I = wh?/12, where w is the width and h is the height. Consider a wooden beam
(E = 10,000 kN/m?) 5.0 m long, 5 cm wide, and 10 cm high, which is subjected 1o the
uniform load ¢ = 1500 N/m on the 5 cm face. Solve for the deflection y(x).

106. When the load on the beam described in Problem 105 is applied on the 10 cm face, the
deflection will be large. In that case, the governing differential equation is

Eld’y/dx®) _ _qlx | gx*

(n + (dy/dx)’)m -2 E

For the properties specified in Problem 105, determine y(x).



75. A Foucault pendulum is one free to swing in both [he x- and .\'—dirt?clio‘r‘ls. ])t‘m] treq‘l:lzr::llinrjli;
played in science museums to exhibit the rotation ()!' the earth, .whu:h causes the pe
swing in directions that continuously vary. The equations of motion are
X — 2w sin ¢y + k% = 0,
v + 2w sin hx + kZy = 0,

I

when damping is absent (or compensated for). In these equations thlc d'ots (f)\;ﬁr that;ﬂ\;?:lrzl:;e
i iati i i is lar velocity of the e -
sent differentiation with respect to time. Here w is the angu
:fgﬁ;’e;‘) X 1075 sec 1), i is the latitude, k2 = g/€ where € is the length Sfthe penc?ulum. How
long w-ill it take a 10-m-long pendulum to rotate its plane of swing by 45° at the latitude where
you live? How long if located in Quebec, Canada?

38. The motion of the compound SPring system as sketched

inFig. 6.11 is given by the solution of the pair of simul- k
taneous equations
d’y,

mf;,? = —ky — ky(y, — ¥a),

" d?y, "

1, —= = [ Jo— v

2 dr? :(_‘r _‘2); kl
where v, and Y2 are the displacements of the two .
masses from their equilibrium Positions. The initja] v e S,
conditions are — -

) = 4, ¥(0) = B ¥.(0) = ¢ vi(0) = p, Figure 6.11

Express as a set of first-order equations.

_—

AZKHEH 14.6 A)emovdeg ka Aayoi

‘Eva modd yvootd OwoobomHa Sraturddnke and tov Vito Volterra (Itakdg, 1860—1940,
deite, yia mapaderypa, tovg Kahaner, Moler ka1 Nash 1989 1 toug Giordano ket Weir
1991). Avté amotedsiton and 560 mAnbuopoie, yia Tapaderyua alemovdov Kat Aayav,
TOL oyeTilovTal pe Tig eElotoeis:

dr
o = 2r —arf
df
ax = St

omov r eival 0 ap1Bude Tov Aayodv ke £ o TANBUOUGG TV ahemovdwy Kal o xpovog ¢
diveton oe £, Xpnowonowiote Xpovopovtiva ode23 ka vroroyiote ko oxeddote
M Abon Tov dapopixon CUGTHUATOS, V1ot & = 0.01 ko aPYIKEG cUVBTKES ro = 300 ko
Jo =150 y1a 10 gpovikd Sidotnua [0, 25].



